Weak signal identification and inference in penalized model selection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Title: Weak Signal Identification and Inference in Penalized Model Selection

Weak signal identification and inference are very important in the area of penalized model selection, yet they are under-developed and not well-studied. Existing inference procedures for penalized estimators are mainly focused on strong signals. In this paper, we propose an identification procedure for weak signals in finite samples, and provide a transition phase inbetween noise and strong sig...

متن کامل

Post-selection inference for l1-penalized likelihood models

According to the article[2], we present a new method for post-selection inference for l1(lasso)penalized likelihood models, including generalized regression models. Our approach generalizes the post-selection framework presented in Lee et al. (2013)[1]. The method provides P-values and confidence intervals that are asymptotically valid, conditional on the inherent selection done by the lasso. W...

متن کامل

Identification, Weak Instruments and Statistical Inference in Econometrics

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedur...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Inference Principles and Model Selection

The core problem of statistics and machine learning addresses the question how can we efficiently find a statistical model to describe empirical data. Classical statistical approaches to solve this problem have been complemented during the last 15 years by Neural Computation, a very promising strategy to data analysis. The Dagstuhl seminar on “Inference Principles and Model Selection” — the fou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 2017

ISSN: 0090-5364

DOI: 10.1214/16-aos1482